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ABSTRACT 

The role of a ball bearing cage is to separate the balls 
and to equivalently distribute them around the whole 
bearing. However, under certain circumstances, the cage 
exhibits dynamical instabilities. Indeed, repetitive 
impacts of the cage with the rolling elements or the 
rings may lead to an erratic behavior. Those persistent 
rebonds within the bearing induce a significant increase 
in the bearing power losses and also in the frictional 
bearing torque. In the worst-case scenario this could 
even result in a ball bearing seizure. Space applications 
have been particularly concerned by cage instabilities  
for the last decades.   

The paper proposes a new cage dynamics model in 
order to understand the nature of cage instabilities and 
then to counteract them. The description of this 
deleterious phenomenon is performed by providing an 
insight of an experimental test campaign, which was 
specifically dedicated to the study of the cage motion. 
The goal of the tests was to validate the cage model as 
well as the understanding of the physical mechanisms 
that govern cage instability. Several bearing and cage 
configurations were investigated. As a result, the key 
internal parameters were identified and directly linked 
to the starts of cage instability phases for the tested 
bearings.    

        

1. INTRODUCTION 

Space applications naturally induce harsh working 
conditions for ball bearings. Maintaining a satisfying 
working behavior of such components during whole 
space missions is a continuous challenge. Indeed, it is 
quite common for ball bearings to endure high speed, 
high loads and harsh conditions that are not suitable for 
mechanical devices. We think for example of bearings 
that work in vacuum, such as those equipping reaction 
wheels and gyroscopes. Without surprise, those 
conditions met in space are favorable for the appearance 
of some harmful phenomena related to ball bearings.  

Among them, one may find occurrences of an unstable 
movement of the ball bearing cage. The so-called cage 
instability is characterized by an erratic motion of the 
separator between both rings and the balls. This leads to 
a sudden, intermittent and big increase in the bearing 
torque. This situation can get worse. Indeed, if the 
kinetic energy of the cage becomes too high, then the 
cage may fail due to the intensity of the loads. Cage 

instability is a real concern for all advanced space 
applications that use roller or ball bearings. 

Reported ball bearing failures are numerous regarding 
space probes and satellites. Among them, one may point 
out a significant amount of ball bearing failures that are 
due to cage instability. For example, reaction wheels of 
recent space missions have been affected : Rosetta 
(ESA) [1], Newton-XMM (ESA) [2] or Cassini (NASA) 
[3]. The loss of one or several reaction wheels leads, at 
least, to a modification of the initial sequence of the 
mission. In such a situation, a skilled team must analyze 
how to maintain a correct behavior of the spacecraft on 
a case-by-case basis [4]. In addition to a loss of time and 
money, it is common to see the initial mission reoriented 
or even shortened. Of course, the worst situation would 
be the complete loss of the space probe or the satellite. 
And bad events are numerous…   

The paper introduces a new computational tool that 
aims at modeling the dynamics of ball bearing cage. The 
fundamental purpose of this model is to provide a clear 
picture of the influence of the key parameters that 
govern cage instabilities. Among other things, this new 
tool should give to the space mechanism designers the 
capability to improve the reliability of their assemblies, 
by notably preventing occurrences of cage instability.     

A large part of the paper is dedicated to the 
experimental validation of the cage model. From one 
side, this is done in order to give an insight of the 
different steps that were realized during the test 
campaign. On the other hand, this way of doing would 
also facilitate the introduction of the essential elements 
that constitute cage instability, which are a priori 
difficult to discern. 

Finally, the possibilities provided by the computational 
model are briefly mentioned. They notably concern the 
development of a new unconditionally stable cage. The 
latter was entirely designed by starting from the deep 
understanding of the specific physical aspects behind 
the cage instability phenomenon.    

2. CHARACTERIZATION OF CAGE 
INSTABILITY 

2.1. Cage instability 

Currently, research is still ongoing because of a lack of 
definitive solution. The main obstacle comes from the 



nature of the cage instability phenomenon, which is still 
not clearly defined. In other words, the hidden 
mechanisms that drive cage instabilities have not been 
identified. For instance, some studies define cage 
instability through purely quantitative criteria [5, 6, 7]. 
Some other works attempt to understand cage instability 
only via consequences that are induced by cage 
instabilities (noise, cage seizure, overheating, increase 
in bearing torque,…) [8]. Also, other researchers  
propose some qualitative approaches to characterize 
cage instability, such as: ‘‘when motion increases, the 
cage becomes unstable’’ [9], ‘‘disturbances in the cage 
motions’’ [10] or ‘‘chaotic vibration of the cage’’ [11]… 
But, from a more general point of view, nothing has 
been proposed yet to definitely counteract this 
dangerous dynamic phenomenon.  

The common point of all the attempts used to describe 
cage instability is a sudden and unexpected rise in the 
kinetic energy of the cage. As a matter of fact, if the 
mean kinetic energy of the cage increases, then the 
intensity of all the impacts occurring with balls and 
rings would also increase. This would obviously lead to 
bearing torque spikes and to a new source of noise 
inside the bearing itself. Conversely, if there is no 
increase in the kinetic energy of the cage, then the 
separator would not cause any trouble regarding the 
bearing torque and would thus not significantly affect 
the bearing behavior.      

A deep understanding of the root causes of these rises in 
the kinetic energy of the cage must ultimately allow 
engineers to improve their design, which prevents 
instability to occur. To that purpose, it appears necessary 
to have a cage model specifically dedicated to cage 
instability at one’s disposal.     

2.2. New model of the cage dynamics 

Despite the complexity of the physical phenomena that 
govern the cage dynamics, the new modeling tool was 
developed in order to be both robust and reliable. 
Hence, an innovative integration method was 
specifically adapted to solve the set of non linear 
equations that are part of the foundations of the model. 
In the present case, the problem is solved by using an 
implicit integration scheme, which allows an absolute 
control regarding the error performed on the Newtonian 
equilibrium.  

For simplicity purposes, the modeling of the cage 
dynamics is explicitly focused on the planar motion of 
the cage. Indeed, it is worth mentioning that cage 
instabilities take place in the particular plane that is 
perpendicular to the bearing axis [12]. As a result, such 
simplification appears to be relevant regarding the 
initial goal of the numerical tool.           

This new model of the cage dynamics necessitates to 
have a priori a precise knowledge of the ball bearing 
equilibrium, which is thus considered without its cage. 
In other words, the cage model uses the classic outputs 
provided by a ball bearing software before starting any 

simulation. This includes, for example: the ball/race 
contact forces, the kinematical variables of the balls, the 
contact angles under loading, etc. Typically, such data 
can be provided by computational codes based on a 
quasi-static formalism. Notably, this approach is the one 
used by the ball bearing software CABARET, which is 
edited by ESTL [13]. Besides, at the time of drafting 
this article, the integration of the new cage model in 
CABARET is ongoing.   

3. EXPERIMENTAL VALIDATION 

An experimental test session was carried on at ESTL’s 
facilities. The first purpose was to study the occurrences 
of cage instability on a specific ball bearing by 
observing the influence of several parameters. In a 
second time, test results were used to establish the 
validation of the numerical model of the cage.    

3.1. Experimental tests 

3.1.1. Test rig  

The test rig that was used for the study of the cage 
behavior is comprehensively described in [14]. To sum 
up, two kinds of measurements were available:   

1. A direct motion capture of the cage. The test rig 
configuration is such that the top face of the tested 
bearing is visible and located at the top of the rig. 
Hence, it allows the use of a high speed camera 
(4000 frames per second, 1024 x 1024 pixels) in 
order to record the motion of the cage in the plane 
that is perpendicular to the bearing axis (Fig. 1). 
For each of the tests, the trajectory of the cage’s 
center was rebuild by analyzing each picture 
separately. This was achieved by identifying the 
edges of the different objects (viz. the cage, the 
rings and the balls) present on each of the pictures, 
as depicted in Fig. 2. Such a procedure was 
performed by using the image processing toolbox 
of MATLAB. This process was not easy to put in 
place, mainly because of the small cage/race 
clearances, as well as the limited resolution of the 
high speed camera. This required a laborious 
filtering process in order to exploit the results. 
Nevertheless, despite the sensitivity to cage/race 
clearances, the process led to successful results, as  
it will be described in Sec. 3.2.1.     

2. B o t h l o w a n d h i g h f re q u e n c y t o rq u e 
measurements. The test rig is equipped with 
Kistler sensors. These sensors are disposed in such 
way that the torque of the tested bearing is directly 
available. Torque data are available at two 
sampling rates: 10 Hz and 2000 Hz.  The low rate 
acquisition allowed us to identify sudden steps in 
the torque, which are representative of cage 
instability occurrences. On the other hand, the 
high rate acquisition torque displayed the cage 
instability signature in the spectrogram of the 
torque, as it would be shown in Sec. 3.2.2.  



3.1.2. Tested bearings 

Ball bearing that were tested were all SKF7005 CD/
P4A. Their characteristics are provided in Tab. 1.   

3.1.3. Test conditions 

Ball bearings were tested in the following conditions: 

- A soft axial preload of 150 N was applied to each of 
the tested bearings. This was performed by using 
Belleville springs. 

- The rotating speed of the tested bearings was 
between 0 rpm and 2000 rpm. The detailed profile 
of the tests is provided in Fig. 3. The purpose was to 
reach two speed plateaux of 2000 rpm in both 
clockwise and counterclockwise directions. 

- All the tests were performed at ambient 
temperature. Considering the short duration of the 
tests (around 160 seconds), no temperature 
measurements were performed. 

Figure 1. Example of bearing picture recorded 
by the high speed camera

Figure 2. Example of bearing picture processed 
by MATLAB

Bearing outer 
diameter 47 mm

Shaft diameter 25 mm

Inner diameter of 
the outer ring 39,9 mm

Outer diameter of 
the inner ring 32,1 mm

Pitch diameter 36 mm

Ball diameter 6,35 mm

Conformity 0,51 - 0,52

Ball complement 14

Contact angle 15º

Cage material
Tufnol Grade RLF/1 
(cotton reinforced 
phenolic resin)

Table 1. Details of the bearing SKF7005 CD/
P4A
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Figure 3. Speed profile of the tests



3.1.4. Test parameters 

Essentially, three parameters were selected in view to 
investigate their influence on cage instability: 

1. A first cage was successively machined in order to 
vary cage/outer race clearance from 0,2 mm to 
0,9 mm, from test to test. A second cage was also 
used with a big clearance of 1 mm. The cages 
were all guided by the outer race.  

2. A removable metallic pin was added on the cage 
during several tests. This allowed to create a cage 
imbalance. The mass of the cage was between 
1,512 g and 1,782 g, following the cage/outer race 
clearance. The mass of the pin was about 0,074 g.  

3. The lubrication conditions were modified between 
the different tests in order to change the friction 
level. Most of the tests were carried out in dry 
conditions. Otherwise, some lubricant (Fomblin 
Z25 oil) was added. Three different amounts of oil 
were selected during the lubricated tests: 4 µl, 
40 µl and 80 µl.  

The parameters and the nomenclature of the tests are 
provided in Tab. 2. 

3.2. Results and correlation 

3.2.1. Motion of the center of the cage 

The instability of the cage can be directly linked to the 
whirl, which is a very rapid translational motion of the 
cage’s center around the bearing axis. Indeed, an 
increase in the whirl corresponds to an increase in the 
kinetic energy of the cage. This specific motion was 
clearly identified on the pictures recorded by the high 
speed camera and by applying the filtering process 
described in Sec. 3.1.1.       

A typical example is given in Fig. 4. It is related to the 
experimental test of the configuration nº7 (Tab. 2), 
during the speed plateau of the clockwise phase (Fig. 3). 
It corresponds to approximately one complete 
revolution of the group of balls around the bearing axis. 
It has to be emphasized that the whirl of the cage is not 
centered on the bearing axis. Indeed, it seems that the 
cage “whirl center” rotates around the bearing axis to 
finally exhibit a “rosette-like” pattern. This means that 
the trajectory of cage’s center is close to a circle, which 
itself turns around the bearing axis. As a result, by 
considering the number of superimposed circles that can 
be guessed in Fig. 4, the whirling behavior of the cage is 
far more rapid than the rotation of the balls around the 
bearing axis. The frequency of the whirl was located 
between 800 Hz and 850 Hz during the speed plateaux 
(Fig. 3). By noting that the bearing motion was 
33,333 Hz (2000 rpm), the motion of the group of balls 
was estimated at 13,864 Hz. Thus the whirling motion 
of the cage is approximately 60 times bigger than the 
rate of the group of balls.  

The phenomenon was reproduced by the model of the 
cage dynamics. The result is depicted in Fig. 4, which 
also corresponds to the configuration nº7, in the same 
speed conditions (2000 rpm). As shown, the whirl 
appears to have the same features, with the same 
“rosette-like” shape.  

From a general point of view, the whirl was expected in 
both numerical and computational results. But the 
“rosette-like” pattern was a surprise at first sight. 
Nevertheless, the model was able to highlight the root 
causes of the phenomenon. This occurred mainly 
because the balls were never perfectly evenly 
distributed within the bearing. Indeed, a symmetrical 
position of the balls would have implied a whirl 
centered on the bearing axis. By allowing a random 
position of the balls, the numerical model demonstrated 
that the cage whirling motion followed the geometrical 
center of the ball group. This center moves on a circle 
centered on the bearing axis. Thus the combination of 
the whirl of the cage and the balls give the “rosette-like” 
shape observed on the test rig.  

A stable motion of the cage exhibits a totally different 
behavior. Fig. 6 depicts the particular case of the 
experimental test of the configuration nº5 (Tab. 2), for 
three revolutions of the group of balls that occurred 
during the speed plateau of the clockwise phase (Fig. 3). 

Configuration
Cage/race 
clearance 

[mm]
Lubricant Cage 

imbalance?

1 0,2 Dry No

2 0,2 Dry Yes

3 0,4 Dry No

4 0,4 Dry Yes

5 0,9 Dry No

6 0,9 Dry Yes

7 1 Dry No

8 1 Dry Yes

9 1 4 µl Z25 No

10 1 40 µl Z25 No

11 1 80 µl Z25 No

12 1 80 µl Z25 Yes

Table 2. Test matrix



As it can be observed, there is no evidence of whirling 
motion. On the contrary, the trajectory is made of three 
superimposed circles that are centered on the bearing 
axis. This implies that the cage geometrical center 
follows the group of balls at the same rate.   

The stable behavior of this specific experimental test 
was also numerically reproduced by the cage model. 
Fig. 7 depicts the result obtained for the configuration 
nº5. The conclusions are identical to the ones performed 
for the experimental tests.    

3.2.2. Ball bearing torque 

Data from the experimental tests showed that cage 
instabilities significantly increase the mean value of the 
torque of the ball bearing. As an example, Tab. 3 lists 
the averages of the torques measured on the test rig for 
the configuration nº5 (Tab. 1) of the bearing. This 
specific configuration was tested three times, by 
following the test profile of Fig. 3. The case nº5 is of 
particular interest, because it exhibited an alternation of 
stable and unstable phases. It was observed that the 
bearing torque was multiplied by 3 to 7, just by 
switching from a stable to an unstable phase of the cage. 
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Figure 4. Motion of the geometrical center of the 
configuration nº7 (experimental)
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Figure 5. Motion of the geometrical center of the 
configuration nº7 (numerical)
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Figure 6. Motion of the geometrical center of the 
configuration nº5 (experimental)
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Figure 7. Motion of the geometrical center of the 
configuration nº5 (numerical)



Such big jumps were also computed by the numerical 
model of the cage dynamics. Fig. 8 depicts an example 
of unstable torque, which was computed by using the 
parameters of configuration nº5. The black curve 
corresponds to the raw results provided by the model. 
The numerous peaks are representative of the ball/cage 
impacts during the functioning of the bearing. The red 
curve is a moving average of the computed torque. As 
expected, the rise in the torque has the same order of 
magnitude as the increase in the torque measured on the 
test rig during unstable phases.          

Fourier transforms of the torque were also performed by 
using the data from the high frequency measurements 
(sampling frequency of 2000 Hz). Fig. 9 gives a 
comparison between torque spectra of both stable and 
unstable cases. 

By considering the torque spectrum of the stable case in 
Fig. 9, several peaks between 250 Hz and 300 Hz can be 
observed. They corresponds to the impacts between the 
cage and the balls. Indeed, this statement was confirmed 
by the numerical tool, which estimated that the 

frequency of these impacts is close to the one measured 
on the test rig.     

The signature of cage instability is clearly visible in the 
spectrogram of an unstable cage. Indeed, the 
spectrogram of the bearing torque shows a distinct peak 
slightly above 800 Hz, which corresponds to the whirl 
motion estimated with the high speed camera. Also, a 
concentration of peaks is present at a frequency 
significantly lower than the whirl of the cage, around 
300 Hz. This is due to the limited sampling frequency, 
which led to aliasing.   

3.2.3. Influence of test parameters  

Tab. 4 synthesizes both experimental and numerical 
results regarding cage instability. As exposed in the 
previous sections, stable and unstable phases of the cage 
that were observed on the test rig were also successfully 
reproduced by using the computational model of the 
cage dynamics. This statement concerns both the motion 
of the geometrical center of the cage and the torque of 
the bearing. These findings are valid for all the 
parameters listed in Tab. 2. 

As expected, the lubricant has a beneficial effect on 
cage instability. Without surprise, this is due to the 
global decrease in the friction.  

At the opposite, the mass bias of the cage does not seem 
to produce any change regarding cage instability. Even 
if the trend appears to be strong, the generalization of 
this conclusion cannot be definitely demonstrated.   

In the present case, a trend seems to emerge concerning 
the influence of the geometry of the cage on its dynamic 
behavior. As a matter of fact, a transition between stable 
and unstable phases occurs around a cage/ring clearance 
of 0,9 mm. Nevertheless, it has to be emphasized that 
this apparent relationship between the cage diametral 
clearance and instabilities cannot be generalized. For 
instance, other working conditions (rotating speed, 
bearing loads,…) or other kinds of cage material could 
have completely changed this link between the design 
and the behavior of the cage. As a consequence, care 
must be taken and cage instability should be 
investigated on a case-by-case basis.    
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Figure 8. Computed torque for configuration nº5  
during an unstable phase
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4.3.2 FFT Results 

• It is also possible to detect when the bearing is unstable due to the cage from the FFT 
spectra of the zones where the shaft speed is constant. The peaks are detected 
automatically. 

• The zones used for the calculation are, as with the calculation of the mean torque, 38s 
long (out of a nominal 40s segment of constant speed from the shaft speed profile). 

• The zones where the mean torque is larger than 7 Nmm in absolute terms are marked 
in red. 

• A “whirl” frequency (Fw) is notable at >800Hz as well as a reflection from a higher 
frequency which is probably 2XFw, which may have multiple sidebands. 

• When the cage is stable, only harmonics of the shaft speed (1X, 2X, 4X, 8X) appear. 
• It appears that the existence of the pin will only marginally affect cage stability, whereas 

clearance is the most important factor. 
• At high clearance (0.9mm), the cage becomes unstable. 
• Lubricating a dry bearing which is unstable renders it stable, at least temporarily. 
• The amount of lubricant does not matter for the effect on stability, but it greatly 

influences the mean torque (losses) of the bearing due to viscosity. 
 

 

 
Figure 4-25  FFT comparing: Clearance (without pin). 
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Figure 9. Fourier transform of the bearing torque 
of stable (configuration nº5) 

and unstable (configuration nº7) experimental tests 

Test

Clockwise phase Counterclockwise 
phase

Mean 
Torque 
[N.mm]

Stability
Mean 

Torque 
[N.mm]

Stability

1 14,6 Unstable 4,2 Stable

2 3,8 Stable 2,1 Stable

3 11,2 Unstable 11,9 Unstable

Table 3. Measured torque for the configuration nº5



4. CONCLUSION ET PERSPECTIVES 

The paper introduced a new computational tool, which 
aims at providing a better understanding of the cage 
instability phenomenon. The paper also highlighted 
some of the fundamental aspects regarding the nature of 
cage instability. This was done notably through the 
description of a test campaign dedicated to the study of 
cage dynamics. Moreover, occurrences of cage 
instability were linked to some variations in the relevant 
parameters that govern the problematic phenomenon. 
Among other things, an insight into the influence that 
cage geometry, mass bias and friction could have on the 
cage dynamics was proposed. The correlations that were 
observed between experimental and computational 
results naturally led to the validation of the new model 
of the dynamics of the cage.       

The results presented in the paper allow a connection 
between the new model of the cage dynamics and the 
ball bearing software CABARET, in collaboration with 
ESTL. In the end, the purpose is to contribute to 
enhance the capabilities of CABARET, especially 
regarding the influence of the cage on the bearing 
behavior. In this way, the authors think that this add-on 
concerning the cage will help the European space 

community by providing an efficient tool to protect 
space mechanisms from cage instabilities.    

Also, an intensive use of the cage dynamics model after 
the experimental test campaign led to a better 
understanding of the cage instability issue. Based on 
that, a new cage design was elaborated in order to 
exhibit an unconditionally stable behavior, no matter the 
conditions encountered by the bearings (load, speed, 
temperature, lubrication, etc.). This particular cage was 
also recently tested, both mathematically and 
experimentally. Hence, the main purpose of these tests 
was to prove that even unfavorable working conditions 
could not force instability. For instance, several metallic 
prototypes were manufactured and experimentally 
tested without any lubricant in order to impose very 
high friction. Despite such extreme conditions, which 
were significantly favorable to cage instability 
occurrences, these tests were successful and 
demonstrated the robustness of the new cage concept. A 
patent application has been filled and the patenting 
process is currently ongoing.     

The new cage is ready for industrialization. The next 
step would be to identify the best way to integrate this 
unconditionally stable cage in critical space mechanisms 
that require very smooth and reliable behavior, such as 
reaction wheels. Turbo pumps of launcher could also get 
benefit from this new technology. Lastly, even if cage 
instability has been clearly identified is space 
applications, the odds are high that other fields 
experience troubles linked to cage instability, with or 
without being aware of it. We think for instance to 
electrical motors or spindles of machine tools. An 
exploratory work has been started to identify if cage 
instability affects those fields as it affects space 
applications.    
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